中继架构A
架构A的特征为:S1接口的用户平面和控制平面都终结于RN。在架构A中,Alt1是其中最基础的架构选项,Alt2和Alt3是对Alt1进行优化得到的。 图10-19 RN网络架构示意图—架构A
如图10-19所示,RN由两部分逻辑功能组成:eNode B功能和UE功能(又称为Relay-UE)。其中,eNode B功能用于为User-UE(在RN下工作的UE)提供接入服务;Relay-uE功能用于在回程连接上收发数据。为使RN的UE功能可以正常工作,LTE-Advanced系统中引入了Relay-UE的MME和Relay-UE的SGW/PGW功能。从图10-19可以看出,架构选项Alt1、Alt2和Alt3的差异对于RN而言是透明的,它们属于同一种架构体系,之间的区别体现在将不同的功能实体集成到DeNode B中。在Alt1中,DeNode B功能和RN的Relay-UE对应的SGW/PGW功能分别位于不同的物理节点;而在Alt2和Alt3中,DeNode B功能和RN的Relay-UE对应的SGW/PGW功能被集成到DeNode B中。
需要注意的是,图10-19中的中继GW功能是可选的,其只存在于架构选项Alt2中。中继网关用于完成Home eNode B GW的功能,集成在DeNode B实体中,其使得DeNode B可以以代理的方式查看并中转经过其传输的S1接口和X2接口消息。中继网关功能对于RN、UE的核心网节点以及其他eNode B而言都是不可见的。 对于上述3种架构选项,现有的S1接口协议无需做任何改动。在Alt1和Alt3下,DeNode B只是将被封装入隧道的S1接口消息映射到一条Un接口承载上进行传输,DeNode B无法获悉其中转的S1接口消息的具体内容。在Alt2中,DeNode B可以获悉经其中转的S1接口消息。Alt2中DeNode B的中继GW功能带来的另一个优点是降低了DeNode B下RN的数量扩展对UE核心网节点的影响。DeNode B将为UE服务的RN与UE的核心网节点屏蔽开,在UE的核心网节点看来RN控制的小区就是DeNode B所控制的小区;同时DeNode B对RN屏蔽了UE的核心网节点,在RN看来DeNode B就是UE的核心网节点。
与S1接口协议类似,对于上述3种架构选项,X2接口协议也无需做任何改动。在Alt2下,DeNode B能够获悉经其中转的X2接口消息。在Alt2下,DeNode B对邻eNode B屏蔽了其服务的RN,在邻eNode B看来RN控制的小区就是DeNode B所控制的小区;DeNode B对RN屏蔽了邻eNode B,在RN看来其邻小区都是DeNode B控制的小区。 1.Alt1/3中的数据传输过程
对于Alt1和Alt3,UE和RN承载以及下行数据包传输过程如图10-20所示。
(1)发往UE的数据包由UE的PGW根据相应的数据包过滤规则(通常根据数据包所属业务的QoS进行分类)确定其所属的UE EPS承载,并通过对应的GTP隧道(位于UE的SGW/PGW和RN之间)进行传输。 (2)对于上述数据包,UE SGW/PGW根据包过滤规则分类(通常根据数据包所属业务的QoS进行分类)确定其所属的RN EPS承载类型,并在IP包头中的DS域中进行指示。
(3)RN的PGW接收到目的地址为RN的GTP隧道数据包,根据数据包过滤规则(基于IP包头中的DS域)将其分类为不同的RN承载,并根据分类结果将该数据包通过第二层GTP隧道(位于RN的SGW/PGW和DeNode B之间)进行传输。对于由同一个RN服务的多个UE,具有相似QoS需求的多条UE EPS承载被映射到同一条RN EPS承载上。
图10-20 用户数据传输过程—Alt1/3
(4)DeNode B维护RN GTP隧道与RN无线承载之间的一一映射关系,根据收到的数据包所属的RN GTP隧道确定对应的RN无线承载,并在Un接口将数据包发往RN。(5)RN维护UE GTP隧道与UE无线承载之间的一一映射关系,根据收到的数据包所属的UE GTP隧道确定对应的UE无线承载,并在Uu接口将数据包发往UE。
在上行,RN基于UE承载的QCI来完成UE承载到RN承载的映射。
2.Alt2中的数据传输过程
图10-21 用户数据传输过程—Alt2
对于Alt2,在UE的SGW/PGW和DeNode B之间,每个UE承载对应一条GTP隧道,这条隧道在DeNode B被转化为另一条GTP隧道,用于从DeNode B到RN的传输,两条GTP隧道一一映射,下行数据包的传输过程如图10-21所示,Alt2与Alt1/3的不同主要体现在以下两方面。(1)DeNode B可以通过解析S1消息知道每一条UE EPS承载的QoS信息,所以,由DeNode B基于收到的数据包所属的UE EPS承载的QCI(通过承载设置时建立起的GTP TEID与之的关系进行过滤)确定该数据包所属的RN无线承载。
(2)DeNode B将从SGW/PGW来的UE承载的GTP隧道转化为另一条指向RN的UE承载GTP隧道,二者为一对一映射。这种将UE承载GTP隧道截断的做法使得RN和核心网相互之间不可见,提高了网络的可扩展性。
对于上行,RN基于UE承载的QCI完成UE承载到RN承载的映射。
对比图10-20和图10-21,可以看出一个显著的区别是:在Alt1/3下,UE承载GTP隧道对DeNode B是不可见的;而在Alt2下,UE承载GTP隧道对DeNode B是可见的。
需要说明的是,EPS承载由GTP隧道和对应的无线承载组成。在Alt2和Alt3中,由于DeNode B中集成了RN的SGW/PGW功能,RN承载的GTP隧道在逻辑上仍然是存在的,所以RN的EPS承载也是客观存在的。这形成了架构A的另一个特征:UE EPS承载与RN EPS承载之间存在嵌套关系。
架构A中的3种选项中各具优势:Alt1对现有网络具有最好的兼容性;Alt3将RN的SGW/PGW功能并入DeNode B后,减少了数据传输途径的节点数,相比Alt1降低了数据传输时延;Alt2下,RN所服务的UE的信息对DeNode B可见,为进一步进行流程优化提供了可能。
架构A的3种子选项采用了相同的Un接口。这意味着,同一种RN可以适用于架构A的所有子选项,在标准上无需对架构A下的3种RN架构再做区分,这也为网络部署带来了实现的灵活度。运营商可以选择Alt1,对现有网络进行简单升级后快速部署RN;也可以选择Alt2和Alt3,对现有网络进行复杂升级后部署RN,以获得更好的网络性能。