第五点
从眼球的屈光特点看,有人测得眼球的静屈光力为+58.6D,这虽然是一特例,但也基本反映出眼球具有很强
的屈光力,其调节相对较小,正常眼为0——10D左右,近视眼为n——10D(n指眼球的近视屈光度数)左右,而它又固定在眼眶内,因此对某一个人来说,可以认为眼球的屈光系统——“透镜”的中心到视网膜的距离不变,在以后的计算中,可认为像距为常数K,对于眼球的屈光来说,如果能在视网膜上成清晰的像,该屈光系统仍满足透镜成像公式 1/u+1/k=P
其中K是常数,P为眼球的屈光度数,是变量,意思是不同的人看不同距离的目标和不同的人眼球的屈光度数不同,U指目标到眼球的距离。该公式成立的条件是:某一时刻,眼睛看某一距离的目标,且目标在眼睛的近、远点之间。从公式看,正视眼看无穷远处时1/u=0,上式可化为P=1/K,可令1/k=P0,即P0为眼球的静屈光度。当看距眼球为L的目标时,“透镜”成像公式变为1/L+1/K=1/L+P0,1/L为眼球增加的屈光度数,1/L+P0即为眼球看距离为L的目标时的屈光度。
对于戴镜者来说,在一般情况下,眼球到眼镜中心的距离约为1.2——2.4CM,以下用h表示,但对于某人某一时刻的值是确定的,设屈光度为P'的透镜的焦距为F,当看距离为L的目标时,镜片成像公式如下:
1/L+1/V=P'==>1/V=P'-1/L①
此时透镜所成像到眼球这一“透镜”的距离为|V|+h,眼球的屈光情况满足公式:1/(|V|+h)+1/K=P②
从公式看,如果|V|比h大得多,根据①公式,②式可近似简化为:
1/|V|+1/K=D=|D'-1/L|+1/K③
由于眼睛透过透镜看到的是虚像,V<0,则1/|V|+1/K=1/L+1/K-D'=D1+D0-D' 从该公式看,|V|的大小取决于物距L和透镜的焦距,考虑到实际情况,近视眼镜的屈光度大多数大于-6D,学生看书、写字的距离大多大于0.25M,而且根据透镜成像公式可知,凹透镜屈光度数P'(注D'<0,下同)越小,V|越小,物距越小,|V|越小,如当D'=-5,U=0.25时,V|=0.111M,仍比0.02M大很多。所以作为理论 近视眼镜
计算,在看距离不太近、镜片度数不太高的目标时,可忽略h,这样可简化计算,有利于定性分析。换言之,对于薄透镜来说,如果忽略眼球到镜片的距离,可以认为因戴近视眼镜致使眼球调节增加的调节度数等于透镜的屈光度数。在眼球与眼镜组成的光学系统中,各部分所产生的屈光度数可近似相加减,这种分析可使计算简化,使问题变得容易。在以后的论述中,我们将利用这一结果进行定性分析和近似计算。